Acute Kidney Injury

MICU Resident Lecture Series
Definition of AKI

- Acute rise in serum creatinine ≥ 0.5 mg/dL
 - If creatinine is over 2.5 mg/dL, then an increase in serum creatinine of over 20%
- Urine output less than 0.3 mL/kg.hr
 - Oliguria < 400cc / 24hrs
 - Anuria < 100 cc / 24 hrs
- Signs or symptoms of uremia
Acute kidney injury is common (and fatal)

- Incidence of about 5-7% in hospital
 - ~25% of ICU patients

- Overall in-hospital mortality rate 20%
 - Increased with need for dialysis (40-50%)
 - Increased in ICU patients (50-70%)
Risk Factors for AKI

- Increased age
- Sepsis
- Cardiac surgery
- Diabetes
- Rhabdomyolysis
- Pre-existing renal disease
- Hypovolemia
- Shock
Acute Kidney Injury Etiology

Prerenal
1. Decrease in intravascular volume
2. Ineffective arterial volume
3. RAS
4. Meds (ACE, NSAID)

Intrinsic
1. Vasculitis
2. Glomerular nephritis
3. Interstitial nephritis
4. Acute tubular necrosis (ATN)

Postrenal
- Bladder or collecting duct obstruction
History and Physical

- **“Prerenal”**
 - GI or blood loss, pancreatitis, CHF or cirrhosis
 - Orthostatic, poor skin turgor, dry MM

- **“Intrinsic disease”**
 - Nephrotoxins, IV contrast, severe and prolonged hypotension, rhabdo, pulmonary renal disease (Goodpastures, Wegener’s)
 - Edema, palpable purpura, muscle tenderness

- **“Post renal”**
 - Decreased stream or anuria, flank pain
 - Distended bladder or prostate enlargement
Nephrotoxic agents

- Antibiotics:
 - Aminoglycosides
 - Piperacillin/tazobactam
 - Amphotericin
 - Bactrim
- NSAIDS
- Contrast – cardiac catheterization and CT
Initial work up

- History and exam
 - Evaluate volume status and etiology
 - CVP
 - Blood pressure, orthostatics

- Urine electrolytes, urine creatinine, and urine BUN (affected by diuretics)

- Urine sediment

- Urine eosinophils

- Placement of foley catheter or bladder scan

- Renal ultrasound
Renal Ultrasound: normal kidneys
Degrees of Hydronephrosis

Mild Moderate Severe
Renal Ultrasound: hydrenephrosis
Calculations

- **FENa** = \(\frac{U_{na}/\text{serum}_{Na}}{U_{cr}/\text{serum}_{Cr}} \) * 100
 - <1% prerenal disease

- **FEUrea** = \(\frac{\text{Serum}_{Cr} \cdot U_{\text{Urea}}}{\text{Serum}_{\text{Urea}} \cdot U_{Cr}} \) * 100
 - <35% prerenal disease
 - Can be used in pts on diuretics

- **BUN / creat ratio**
 - > 20:1 in prerenal states
Urine sediment and routine labs

Table 3. Urinalysis, Urine Chemistries, and Osmolality in Acute Renal Failure

<table>
<thead>
<tr>
<th></th>
<th>Hypovolemia</th>
<th>Acute Tubular Necrosis</th>
<th>Acute Interstitial Nephritis</th>
<th>Glomerulonephritis</th>
<th>Obstruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sediment</td>
<td>Bland</td>
<td>Broad, brownish granular casts</td>
<td>White blood cells, eosinophils, cellular casts</td>
<td>Red blood cells, red blood cell casts</td>
<td>Bland or bloody</td>
</tr>
<tr>
<td>Protein</td>
<td>None or low</td>
<td>None or low</td>
<td>Minimal but may be increased with NSAIDs</td>
<td>Increased, >100 mg/dL</td>
<td>Low</td>
</tr>
<tr>
<td>Urine sodium, mEq/L*</td>
<td><20</td>
<td>>30</td>
<td>>30</td>
<td><20</td>
<td><20 (Acute) >40 (Few days)</td>
</tr>
<tr>
<td>Urine osmolality, mOsm/kg</td>
<td>>400</td>
<td><350</td>
<td><350</td>
<td>>400</td>
<td><350</td>
</tr>
<tr>
<td>Fractional excretion of sodium, %†</td>
<td><1</td>
<td>>1</td>
<td>Varies</td>
<td><1</td>
<td><1 (Acute) >1 (Few days)</td>
</tr>
</tbody>
</table>

Abbreviation: NSAIDs, nonsteroidal anti-inflammatory drugs.

*The sensitivity and specificity of urine sodium of less than 20 in differentiating prerenal azotemia from acute tubular necrosis are 90% and 82%, respectively (N = 85).†

†Fractional excretion of sodium is the urine to plasma (U/P) of sodium divided by U/P of creatinine × 100. The sensitivity and specificity of fractional excretion of sodium of less than 1% in differentiating prerenal azotemia from acute tubular necrosis are 96% and 95%, respectively (N = 85).
WBC cast

Granular cast

RBC cast
Management

- Reverse underlying cause
- Avoid nephrotoxic agents
- Treat hyperkalemia
- Early involvement of renal consultants
- Adjust medication doses
 - Antibiotics
 - Pain medications
- Initiate hemodialysis
Treat hyperkalemia

- Cardiac membrane stabilization
 - Calcium

- Peripheral uptake of potassium intracellularly
 - Bicarbonate
 - Insulin / D50
 - Albuterol

- Elimination of potassium
 - Loop diuretics
 - Binding resins – Kayexalate
 - Dialysis
Indications for acute dialysis

- “A-E-I-O-U”
 - Acidosis (pH<7.1)
 - Electrolyte abnormalities (hyperkalemia, sodium)
 - Intoxicants (lithium, toxic alcohols, others)
 - Overload (fluid)
 - Uremia (mental status, pericarditis, neuropathy)
Prevention strategies

• Avoid nephrotoxic agents if possible

• Sepsis
 • Dose Abx once vs. 3X per day
 • Amphotericin alternative (liposomal)

• Contrast
 • Adequate volume with bicarbonate containing IVF
 • NAC (Mucomyst)
 • Consider other imaging techniques (MRI or US)
Prevention strategies

- **Rhabdomyolysis**
 - Bicarb and volume replacement

- **Liver failure**
 - TIPS
 - Albumin in SBP patients
 - Possible octreotide

- **Surgery** — maintain adequate intravascular volume

- **Negative trials**
 - Dopamine, diuretics, nesiritide (Natrecor), fenoldapam (Corlopam)
Cases
Case 1 – Decreasing urine output in CHF

- 67 yo woman with respiratory failure secondary to CHF, EF 25% now with decreasing urine output
 - BP 95/45, orthostatic
 - Edematous, JVD, and pulmonary edema
 - BUN 45, creat 1.0
 - Urine Na 15
 - FENA = 1%
 - FEUN = 20%

CHF with ineffective circulating volume
- Treat with dobutamine
Case 2 – Elevated creatinine in the ICU

- 75 yo man with elevation in baseline creatinine of 1.0 to 2.5, on Zosyn for pneumonia
 - Normotensive and no edema
 - BUN 25, creat 2.5
 - Urine Na 45
 - FENA = 2%
 - FEUN = 55%
 - Sediment with muddy brown casts
 - Urine eosinophils negative

ATN
- Stop offending drug
Case 3 – Anuria

- 45 yo morbidly obese man admitted for respiratory distress and hypercapnea, now with no urine output
 - Normotensive and no edema
 - No urine output, no foley

Bladder outlet obstruction
 - Place foley
Case 4 – Decreased urine output in GI bleeding

- 82 yo woman admitted for a GI bleed, now with decreasing urine output to 10 cc per hour
 - Normotensive but orthostatic
 - BUN 25, creat 1.0
 - Urine Na <5
 - FENA = 0.3%
 - FEUN = 15%
 - Sediment bland

Hypovolemic
- Give fluid bolus
Questions?
Abbreviated bibliography

